Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bayesian B-spline mapping for dynamic quantitative traits.

Identifieur interne : 002B88 ( Main/Exploration ); précédent : 002B87; suivant : 002B89

Bayesian B-spline mapping for dynamic quantitative traits.

Auteurs : Jun Xing [République populaire de Chine] ; Jiahan Li ; Runqing Yang ; Xiaojing Zhou ; Shizhong Xu

Source :

RBID : pubmed:22624568

Descripteurs français

English descriptors

Abstract

Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.

DOI: 10.1017/S0016672312000249
PubMed: 22624568


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bayesian B-spline mapping for dynamic quantitative traits.</title>
<author>
<name sortKey="Xing, Jun" sort="Xing, Jun" uniqKey="Xing J" first="Jun" last="Xing">Jun Xing</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Gastroenterology, Tumor Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Gastroenterology, Tumor Hospital of Harbin Medical University, Harbin 150086</wicri:regionArea>
<wicri:noRegion>Harbin 150086</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jiahan" sort="Li, Jiahan" uniqKey="Li J" first="Jiahan" last="Li">Jiahan Li</name>
</author>
<author>
<name sortKey="Yang, Runqing" sort="Yang, Runqing" uniqKey="Yang R" first="Runqing" last="Yang">Runqing Yang</name>
</author>
<author>
<name sortKey="Zhou, Xiaojing" sort="Zhou, Xiaojing" uniqKey="Zhou X" first="Xiaojing" last="Zhou">Xiaojing Zhou</name>
</author>
<author>
<name sortKey="Xu, Shizhong" sort="Xu, Shizhong" uniqKey="Xu S" first="Shizhong" last="Xu">Shizhong Xu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22624568</idno>
<idno type="pmid">22624568</idno>
<idno type="doi">10.1017/S0016672312000249</idno>
<idno type="wicri:Area/Main/Corpus">002A27</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A27</idno>
<idno type="wicri:Area/Main/Curation">002A27</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002A27</idno>
<idno type="wicri:Area/Main/Exploration">002A27</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bayesian B-spline mapping for dynamic quantitative traits.</title>
<author>
<name sortKey="Xing, Jun" sort="Xing, Jun" uniqKey="Xing J" first="Jun" last="Xing">Jun Xing</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Gastroenterology, Tumor Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Gastroenterology, Tumor Hospital of Harbin Medical University, Harbin 150086</wicri:regionArea>
<wicri:noRegion>Harbin 150086</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jiahan" sort="Li, Jiahan" uniqKey="Li J" first="Jiahan" last="Li">Jiahan Li</name>
</author>
<author>
<name sortKey="Yang, Runqing" sort="Yang, Runqing" uniqKey="Yang R" first="Runqing" last="Yang">Runqing Yang</name>
</author>
<author>
<name sortKey="Zhou, Xiaojing" sort="Zhou, Xiaojing" uniqKey="Zhou X" first="Xiaojing" last="Zhou">Xiaojing Zhou</name>
</author>
<author>
<name sortKey="Xu, Shizhong" sort="Xu, Shizhong" uniqKey="Xu S" first="Shizhong" last="Xu">Shizhong Xu</name>
</author>
</analytic>
<series>
<title level="j">Genetics research</title>
<idno type="eISSN">1469-5073</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Bayes Theorem (MeSH)</term>
<term>Chromosome Mapping (methods)</term>
<term>Computer Simulation (MeSH)</term>
<term>Markov Chains (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Monte Carlo Method (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Stems (genetics)</term>
<term>Plant Stems (growth & development)</term>
<term>Populus (growth & development)</term>
<term>Quantitative Trait Loci (genetics)</term>
<term>Regression Analysis (MeSH)</term>
<term>Reproducibility of Results (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Analyse de régression (MeSH)</term>
<term>Cartographie chromosomique (méthodes)</term>
<term>Chaines de Markov (MeSH)</term>
<term>Locus de caractère quantitatif (génétique)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Méthode de Monte Carlo (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Simulation numérique (MeSH)</term>
<term>Théorème de Bayes (MeSH)</term>
<term>Tiges de plante (croissance et développement)</term>
<term>Tiges de plante (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Stems</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Locus de caractère quantitatif</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chromosome Mapping</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cartographie chromosomique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Bayes Theorem</term>
<term>Computer Simulation</term>
<term>Markov Chains</term>
<term>Models, Genetic</term>
<term>Monte Carlo Method</term>
<term>Phenotype</term>
<term>Regression Analysis</term>
<term>Reproducibility of Results</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de régression</term>
<term>Chaines de Markov</term>
<term>Modèles génétiques</term>
<term>Méthode de Monte Carlo</term>
<term>Phénotype</term>
<term>Reproductibilité des résultats</term>
<term>Simulation numérique</term>
<term>Théorème de Bayes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22624568</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>05</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1469-5073</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>94</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Genetics research</Title>
<ISOAbbreviation>Genet Res (Camb)</ISOAbbreviation>
</Journal>
<ArticleTitle>Bayesian B-spline mapping for dynamic quantitative traits.</ArticleTitle>
<Pagination>
<MedlinePgn>85-95</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1017/S0016672312000249</ELocationID>
<Abstract>
<AbstractText>Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xing</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Gastroenterology, Tumor Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jiahan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Runqing</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Xiaojing</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Shizhong</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genet Res (Camb)</MedlineTA>
<NlmUniqueID>101550220</NlmUniqueID>
<ISSNLinking>0016-6723</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="Y">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001499" MajorTopicYN="Y">Bayes Theorem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008390" MajorTopicYN="N">Markov Chains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="Y">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009010" MajorTopicYN="N">Monte Carlo Method</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012044" MajorTopicYN="N">Regression Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22624568</ArticleId>
<ArticleId IdType="pii">S0016672312000249</ArticleId>
<ArticleId IdType="doi">10.1017/S0016672312000249</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Li, Jiahan" sort="Li, Jiahan" uniqKey="Li J" first="Jiahan" last="Li">Jiahan Li</name>
<name sortKey="Xu, Shizhong" sort="Xu, Shizhong" uniqKey="Xu S" first="Shizhong" last="Xu">Shizhong Xu</name>
<name sortKey="Yang, Runqing" sort="Yang, Runqing" uniqKey="Yang R" first="Runqing" last="Yang">Runqing Yang</name>
<name sortKey="Zhou, Xiaojing" sort="Zhou, Xiaojing" uniqKey="Zhou X" first="Xiaojing" last="Zhou">Xiaojing Zhou</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Xing, Jun" sort="Xing, Jun" uniqKey="Xing J" first="Jun" last="Xing">Jun Xing</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B88 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B88 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22624568
   |texte=   Bayesian B-spline mapping for dynamic quantitative traits.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22624568" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020